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ABSTRACT 

We give criteria for a closed 4-manifold to be homotopy equivalent to the total 
space of an Sl-bundle over a closed 3-manifold. In the aspherical case the 
conditions are that the Euler characteristic be 0 and that the fundamental 
group have an infinite cyclic normal subgroup such that the quotient group 
has one end and finite cohomological dimension. Under further assumptions on 
this quotient group we characterize the total spaces of such bundles over SL-  

or  H ~ x El-manifolds and o v e r  E 3-, N i l  3- or  SolJ-manifolds up to s-cobordism 
and homeomorphism respectively. 

I n t r o d u c t i o n  

In this paper  we shall give criteria for a closed 4-manifold M to be h o m o t o p y  

equivalent to the tota l  space of  an S l -bund le  with base a closed 3-manifold N 

with infinite fundamenta l  group.  If  each irreducible fac tor  of  N is ei ther  Haken,  

h o m o t o p y  equivalent to  a hyperbol ic  3-manifold or Seifert fibred and  7ri ( M )  is 

tors ion free then any such h o m o t o p y  equivalence is simple. We shall show tha t  

M is h o m o t o p y  equivalent to the total  space of an S L b u n d l e  over an  aspherical  

P D 3 - c o m p l e x  if and  only if x(M) = 0 and # = ~rl(M) has an infinite cyclic nor- 

mal  subgroup  A such tha t  #/A has one end and  finite cohomological  dimension.  

If  moreover  p/A has a subgroup of  finite index with infinite abel ianizat ion and  

with a nontr ivial  abelian normal  subgroup B/A then M is s -cobordan t  to  the  

tota l  space E of  an  S l -bund le  over a 3-manifold which is Seifert fibred or  is a 

Sol3-mamfold; if B/A  has rank  at least 2 then  M is in fact homeomorph ic  to  E .  

This  note  is loosely related to two other  papers  on PD- f ib ra t ions  of  4-manifolds 

over S 1 and  over surfaces ([12] and [13], respectively).  
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1. The  H o m o t o p y  T y p e  of  Cer ta in  4-Manifolds  

If M is a manifold or cell complex P2(M) shall denote the second stage of 

the Postnikov tower for M, and CM = gMfM the factorization of the clas- 

sifying map CM : M ~ g(~rl(M), 1) through fM : M ---* P2(M) and gM : 

P2(M) ~ g(Trl(M),l) .  A map f :  X ~ g(~r l (M), l )  lifts to a map from X to 

P2(M) if and only if f ' k1  = O, where kl is the first Postnikov invariant of M 
in g3(Tq(M);~r2(M)). The set of self maps k of P2(M) such that gMk = gM 

acts transitively on the set of all such lifts. Note that P2(M) = L(~2(M),2), 

the analogue of a g(~r2(M), 2)-space in the category of spaces over g(lr l  (M), 1), 

in the notation of page 300 of [1]. (This reference gives a detailed treatment of 

Postnikov factorizations of nonsimple maps and spaces.) 

If w is a homomorphism from a group G to Z/2Z  we shall let Z w denote the G- 

module with underlying abelian group Z and G-action given by g.n = (-1)w(g)n 

for all g in G and n in Z. If M is a closed m-dimensional manifold or Poincar6 

duality complex [M] shall denote a generator of H,n(M; Zw'(M)), where the first 

Stiefel-Whitney class w~(M) is considered as a homomorphism from r l ( M )  to 

z/2z. 

THEOREM 1 : Let E be a dosed 4-manifold with fundamental group # and sup- 

pose that fE induces a monomorphism from/-/4(E; Zw'(E)) to 1t4 (P2 (E); ZW' (E)) 

A dosed 4-manifold M is homotopy equivalent to E if  and only i f  there is an 

isomorphism 8 from r l (M)  to # such that wl(M) = wl(E)8, there is a lift 

e: M ~ P2(E) of ScM such that (:,[M] = + fE,[E] and x (M)  = x(E).  

Proof: The conditions are clearly necessary. Conversely, suppose that they hold. 

We shall adapt to our situation the arguments of Hendriks [8] in analyzing the 

obstructions to the existence of a degree 1 map between PD~-complexes realizing 

a given homomorphism of fundamental groups. For simplicity of notation we 

shall write 2 for Z w~(E) and also for Z'~'(M)(= 8*Z), and use 6 to identify 

~rl (M) with # and K(~'I (M), 1) with K(#, 1). We may suppose the fundamental 

class [M] is so chosen that O, CM,[M] = CE,[E]. Then ~,[M] = JE,[E]. 
Let Eo = E \ D  4. Then P2(Eo) = P2(E) and may be constructed as the 

union of Eo with cells of dimension >_ 4. Let h : 2 ®~, r4(P2(Eo),Eo) 

H4(P2(Bo), Eo; 2 )  be the wl(E)-twisted relative Hurewicz homomorphism, and 
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let 0 be the connecting homomorphism from 7r4(P2(Eo), Eo) to Ir3(Eo) in the 

exact sequence of homotopy for the pair (P2(Eo), Eo). Then h and 0 are isomor- 

phisms since leo is 3-connected. The composite of the inclusion H4(P2(E); Z) = 
H4(P2(Eo); 2) --* H4(P2(Eo), Eo; Z) with h -1 and 1 ®~, 0 gives a monomorphism 

rE from H4(P2(E); 2) t o  2 ®. ~rs(Eo). Similarly Mo = M\D 4 may be viewed as 

a subspace of P2(Mo) and there is a monomorphism rM from H4(P~(M); 2) to 

®~ 7rs(Mo). These monomorphisms are natural with respect to maps defined 

on the 3-skeleta of the spaces (i.e., Eo and Mo). 
The classes rE(rE,[El) and rM(fM,[M]) are the images of the primary ob- 

structions to retracting E onto Eo and M onto Mo, under the Poincar~ duality 

isomorphisms from H4(E, Eo; 7r3(Eo)) to Ho(E\Eo; Z ®, Trs(Eo)) = 2®~,~rs(Eo) 

and from H4(M, Mo; 7r3(Mo)) to 2 ®~, rs(Mo), respectively. Since Mo is homo- 

topy equivalent to a cell complex of dimension _< 3 the restriction of ~ to Mo 
is homotopic to a map from Mo to Eo. In particular, (1 ®# ~)rM(fM,[M]) = 
rE(fs,[E]), where ~ is the homomorphism from 7r3(Mo) to 7rs(Eo) induced by 

~IMo. It follows as in [8] that  the obstruction to extending ~lMo : Mo --* Eo to 

a map d from M to E is trivial. 

Since fE, d,[M] = ~,[M] = fE,[E] and rE, is a monomorphism in degree 4 

the map d has degree 1. The only obstruction to d being a homotopy equivalence 

is the "surgery kernel" ker r2(d), which is a stably free Z[p]-module, by Lemma 

2.3 of [20]. Up to homotopy type we may assume that  E and M are finite 

cell complexes, and that M is a subcomplex of E. On counting bases for the 

equivariant cellular chain complex of the universal covering of the pair (E, M) 

we find that  (ker Ir2(d)) @ Z[p]" = ZIp] b for some nonnegative integers a and 

b such that a + x(M) = b + x(E) (cf. the argument of Theorems 3 and 7 of 
Chapter 3 of [11]). Since x(M) = x(E) we have a = b. It now follows from a 

lemma of Kaplansky that  ker 7r2(d) = 0. (Kaplansky did not publish his lemma 

in detail, but a complete proof of a generalization may be found in [15].) Thus 

d is a homotopy equivalence, v 

If there is such a lift ~ then c*MO*k~ = 0 and O,CM,[M] = CE,[E]. It can be 

shown that  these conditions imply that there is a lift ~ such that  ~,[M] - rE, [E] 

lies in the image of H4(g(~r2(E), 2); Z) in H4(P2(E); 2). 

2. B u n d l e s  over  3 - M a n i f o l d s  

If p : E ~ B is the projection of an Sl-bundle ~ over a connected base B 

then the natural  map p. : ~rl (E) --* 7rl (B) is an epimorphism with cyclic kernel. 

The action of ~rl (B) on ker p, determined by conjugation in 7rl (E) is given by 
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w = Wl(~) : ~r,(B) --* Z/2Z  ~ {4-1} < Aut(ker p.).  For if tr is any loop in B 

the total space of the induced bundle a*~ is the torus if w(a) = 0 and the Klein 

bottle if w(a) = 1 in Z/2Z; hence gzg -1 = z'(g) where e(g) = ( -1 )  '~(v'(g)) for 

g in ~rl (E)  and z in ker p..  If the base B is a manifold we may use naturality 

and the Whitney sum formuia (applied to the associated R2-bundle ~) to show 

that  w, (E)  = p*(w,(B) + w,(~)). (As p* : H I ( B ; Z / 2 Z )  ---, H I ( E ; Z / 2 Z )  is a 

monomorphism this equation determines wl(~).) 

Bundles for which ker p, -~ Z have the following equivalent characterizations. 

LEMMA 1: Let ~ be an S 1-bundle with total space E, base B and projection 

p : E --* B, and suppose that B is connected. Then the fo110wing conditions are 

equivalent: 

(i) ~ is induced from an S'-bundle over K(~r,( B), 1) via cB; 

(ii) for each map fl : S 2 --* B the induced bundle fl*~ is trivial; and 

(iii) the kernel of the epimorphism p. : ~rl(E) ~ ~rl(B) induced by p is infinite 

cyclic. 

I f  these conditions hold then c(~) = cb'~ , where c(~) is the characteristic class 

of ~ in H2(B; Z w) and E is the c/ass of the extension of fundamental groups in 

H2(~rl(B); Z w) = H2( K(Tri ( B), 1); ZW), where w = Wl((). 

Proof." Condition (i) implies condition (ii) as for any such map fl the composite 

cBfl is nullhomotopic. Conversely, as we may construct K(~r~ (B), 1) by adjoining 
cells of dimension >_ 3 to B condition (ii) implies that  we may extend ~ over the 

3-cells, and as Sl-bundles over S" are trivial for all n > 2 we may then extend 

over the whole of K(~rl(B), 1), so that  (ii) implies (i). The equivalence of (ii) 

and (iii) follows on observing that  (iii) holds if and only if 0/~ = 0 for all such 

~9, where 0 is the connecting map from ~r~(B) to ~rl(S 1) in the exact sequence 

of homotopy for ~, and on comparing this with the corresponding sequence for 

As the natural map from the set of Sl-bundles over K(% 1) with Wl = w 

(which are classified by H2(K(~r, 1); Z ' ) )  to the set of extensions of ~r by Z with 

~" acting via w (which are classified by H2(~r; ZW)) which sends a bundle to the 

extension of fundamental groups is an isomorphism we have c(~) = c~(E), n 

If N is a closed 3-manifold which has no summands of type S 1 x S 2 or S 1 x S 2 

(i.e., if 7rl(N) has no infinite cyclic free factor) then every SLbundle  over N 

with w = 0 restricts to a trivial bundle over any map from S 2 to N. For if 

is such a bundle, with characteristic class c(x) in H2(N; Z), and/9 : S 2 -o N is 
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any map then n [S I) n [S2]) = c ( 0  n a , [ S  21 = 0, as the 
Hurewicz homomorphism is trivial for such N. Since/~. is an isomorphism in 

degree 0 it follows that  c(~*~) = 0 and so ~*~ is trivial. (A similar argument 
applies for bundles with w # 0, provided the induced 2-fold covering space N ~' 

has no summands of type S 1 x S 2 or S 1 xS2.) 

On the other hand the bundle with total space S 1 × S s, base S 1 × S 2 and 

projection ids~ × 7/ (where 7/ is the Hopf fibration) is clearly nontrivial when 

pulled back over any essential map from S 2 to S 1 x S 2, and is not induced from 

any bundle over K(Z,  1). Moreover, a closed 3-martifold N with no summands 

of type S 1 x S 2 or S 1 x S  2 may have a 2-fold covering space (corresponding to 

a homomorphism w from *rl(N) to 2/2Z) with such summands; for instance 

S 1 x S 2 is a 2-fold covering space of RPS~RP 3. 

In general, any Sl-bundle over B is induced from some bundle over P2(B). 

Given an epimorphism 7 : # --* v with cyclic kernel and such that  the action of 

v on ker 7 determined by conjugation in # factors through multiplication by 4-1 

there is an S~-bundle P(7) : X(7)  --* Y(7) whose fundamental group sequence 

realizes 7 and which is universal for such bundles; the total space of this universal 

bundle is a K(# ,  1) space (cf. Proposition 11.4 of [20]). If ker 7 is finite then the 

base space Y(7) is an L(Z w, 2) space in the notation of [11. 

THEOREM 9.: Let M be a dosed 4-manifold and N a dosed 3-manifold with 

infinite fundamental group. Then M is homotopy equivalent to the total space 

of an S 1-bundle over N if  and only i f  

(i) there is an epimorphism 7 from # = r~(M) to u = ~r~(N) with cydic kernel, 

and the action of v on ker7 induced by conjugation in # factors through a 

homomorphism w: v ~ Z /2Z  ~- {4-1} < Aut(ker 7); 

(ii) wl(M)  = (wl(N) + w)7; 

(iii) there are maps V : P2(N) ~ Y(7) and ~ : M --* P2(N) such that gN = 

cy(.t) v and V~ = p(7)CM and (~,CM).[M] = 4-tr(fN.[N]) in H4(Pz(N) Xy(-t) 
K(#, 1); Zw~(M)), where tr is the transgression; and 

(iv) x (M)  = O. 

Proof: Since these conditions are homotopy invariant and hold if M is the total 

space of such a bundle, they are clearly necessary. Suppose conversely that  

they hold. Let E = N XK(v,1) K(# ,  1) and P = P2(N) Xy(~) K(p, 1) be the 

total spaces of the Sl-bundles over N and P2(N) obtained by pulling back the 

universal Sl-bundle over Y(7) with fundamental group sequence as in condition 

(i) via the maps YgN and y, respectively. Then P _,2 P2(E) and the natural  
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map from E to P covering gN may be identified with 9E. Moreover wl (E)  = 

(w,(N) + w)7 = wl(M), as maps from p to 2/22 ,  and x ( E )  = 0 = x(M) ,  by 

conditions (ii) and (iv). Since v is infinite the universal covering space of g 

is an open 3-manifold, and so any map from S z to N is trivial on homology. 

As P2(N) may be constructed as the union of N with cells of dimension > 4 it 
- -  j J 

follows that  H3(fN; Z wl(N)) is a monomorphism. As the maps fN and fE induce 

a homomorphism between the homology spectral sequences of these S 1-bundles 

it follows easily that  H4(fE; Z wl(E)) is also a monomorphism. Since condition 

(iii) gives us a map (~,CM) from M to P2(E) such that  (~,CM),[M] = fE,[E] 
Theorem 1 now implies that  M is homotopy equivalent to E.  [] 

When ker7  - Z the base Y(7) of the universal bundle is a K(v, 1) space and 

y = gN. Condition (iii) then implies that  

(ilia) c~tT*kl = 0, where kl is the first Postnikov invariant of N; and 

(iiib) CM,[M] = +G(cN,[N]), where G is the ("Gysin") homomorphism from 

HB(v;Z wN) = H3(v;Hl(kerT;ZWM)) to H4(p;Z wM) determined by the LHS 

spectral sequence for p as an extension of v by Z. 

(Note that  H1 (kerT; Z wM)is isomorphic to Z ~'N by (ii)). If ~ = 7rl(g) is torsion 

free then G is in fact an isomorphism, for c.d.v < 3 and so the LHS spectral 

sequence is trivial outside the block 0 _< p _< 3, 0 < q _< 1.) If moreover v is not 

free (i.e., if N has at least one aspherical summand) then H3(CN; Z w~(N)) is a 

monomorphism. Do these conditions in turn imply that (iii) holds? 

If v is finite then Ir2(N) = 0, so every Sl-bundle over N is induced from a 

bundle over g(v ,  1). Conditions (i)-(iv) remain necessary, but  it is no longer 

clear that  there should be a degree 1 map from M to the total space of such a 

bundle. 

Although Theorem 2 may be applied to characterize products N x S 1 up to 

homotopy type, a different argument shows that  the conditions on the funda- 

mental  group and Euler characteristic which are obviously necessary are almost 

sufficient alone to characterize orientable products. 

THEOREM 3: Let M be a dosed orientable 4-manifold with x(M) = 0 and 
such that 7rl (M) is a direct product v x Z. Then the covering space M' with 

fundamental group v is an orientaMe PD3-complex. I f  v is torsion free and is 

the fundamentM group of a dosed orientable 3-manifold N then M is homotopy 

equivalent to N x S 1 if  and only if  w2( M) = O. 

Proof" The first assertion is essentially Theorem 3 of Chapter  7 of [11]. Let ¢ 

be a generator of the covering group Aut(M/M')  ~- Z. If ~, ~ ~rl(M') is torsion 
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free and is the fundamental group of a closed orientable 3-manifold N then the 

indecomposable free factors of u are either the groups of aspherical closed 3- 

manifolds or infinite cyclic, and so by [18] and the unique factorization theorem 

for orientable 3-manifolds there is a homotopy equivalence h : M '  ~ N. The 

manifold M may be recovered up to homotopy equivalence as the mapping toms 

M(¢) ,  where ¢ is the self homotopy equivalence of N defined by ~b = heh -1. We 

may assume that  ¢ fixes a basepoint. Since lrl (M) - u x Z the map ¢ induces 

the identity on ~'I(N), and so is homotopic to a rotation about a 2-sphere [9]. If 

w2(M) = 0 then the rotation is homotopic to the identity and so M is homotopy 

equivalent to N x $1; the converse is clear, o 

Let r be the twist map of S '  x S 2, given by r(x, y) = (z, p(z)(y)) for all (x, y) 

in S 1 x S 2, where p is an essential map from S 1 to SO(3). The mapping torus 

M(r)  has fundamental group Z x Z and Euler characteristic 0 but  w2(M(r)) # 0 
and M(r)  is not homotopy equivalent to a product. (Clearly however M(r  2) = 
S 1 x S 2 x S 1.) 

Every PD3-complex with torsion free fundamental group is a connected sum 

of aspherical PD3-complexes and copies of S 1 x S 2 or S 1 x S  2, by Theorem C of 

[18]. Thus every such complex is homotopy equivalent to a closed 3-manifold if 

every PD3-group is the fundamental group of some aspherical closed 3-manifold. 

(Some restriction on torsion is necessary--cf. [171). 

It would be of interest to have a theorem that involved only assumptions on 

M, without specifying N in advance. For instance, the conditions "x(M) = 0" 
and "# = ~q(M) has an infinite cyclic normal subgroup A such that  I~/A is 

virtually of finite cohomological dimension" are certainly necessary for M to 

PD-f ibre  over some 3-manifold. Are they sufficient? In the aspherical case there 

is such a characterization, modulo the question of whether every PD3-group is 

a 3-manifold group. 

THEOREM 4: A dosed 4-manifold M is homotopy equivalent to the total space 
of an S l-bundle over an aspherical PDa-complex if  and only if  x (M)  = 0 and 
I~ = 7q ( M) has an infinite cydic normaJ subgroup A such that I~/A has one end 

and finite cohomological dimension. 

Proof." The conditions are clearly necessary. Conversely, suppose that  they hold. 

Since # /A has one end H'(I~/A; Z[~t/A]) = 0 for s < 1 and so Hi(p; Z[p]) = 0 

for t < 2, by an LHS spectral sequence calculation. Therefore M is aspherical, 

by Theorem 3 of Chapter  3 of [11], and so p is a PD4-group. Since A is FP= 

and c.d.p/A < o¢ the quotient p/A  is a PD3-group, by Theorem 9.11 of [2]. 
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Therefore M is homotopy equivalent to the total space of an S 1-bundle over the 

PD3-complex K ( p / A ,  1). n 

Note that  a finitely generated torsion free group has one end if and only if it 

is indecomposable as a free product and is neither infinite cyclic nor trivial. 

In particular, M is homotopy equivalent to a product of an aspherical PD3-  

complex with S 1 if and only if x ( M )  = 0 and # "~ v × Z where v has one end 

and finite cohomological dimension. 

3. Simple Homotopy Type and s-Cobordlsm 

By imposing further conditions on the fundamental group p (or on the base N) 

we can obtain stronger results. We shall say that  a 3-manifold is homotopy- 

hyperbolic if it is homotopy equivalent to a 3-manifold with a hyperbolic struc- 

ture. Every virtually Haken 3-manifold is either Haken, homotopy-hyperbolic or 

Seifert-fibred [4]. (It is an open question whether every irreducible 3-manifold 

with infinite fundamental group is virtually Haken.) 

LEMMA 2: Let p be a group with an int~nite cyclic normM subgroup A such 

that v = p / A  is torsion free and is a free product v = *l<iSnb' i where each 

factor is the fundamental group of  an irreducible 3-manifold which is Haken, 

homotopy-hyperbolic or Seifert /]bred. Then W h ( p )  = W h ( v )  = O. 

Proof." (Note that  our hypotheses allow the possibility that  some of the factors 

vi are infinite cyclic.) Let tti be the preimage of vi in p, for I < i < n. Then 

# is the generalized free product of the #i's, amalgamated over infinite cyclic 

subgroups. For all 1 < i < n we have Wh(g~) = 0, by Lemma 1.2 of [16] if 

K(v~, 1) is Haken, by the main result of [5] if it is homotopy-hyperbolic, by an 

easy extension of Proposition 2.5 of [14] if it is Seifert fibred and by Theorem 

19.5 of [19] if v~ is infinite cyclic. As the group rings Z[#/] have finite cohomo- 

logical dimension and the amalgamations are over subgroups whose group rings 

are regular noetherian, the Ni l  groups of Waldhausen for these amalgamations 

vanish, and so his Mayer-Vietoris sequence for the K-theory of group rings [19] 

gives us Wh(I.t) = W h ( v )  = 0 also. n 

This lemma may be used to strengthen Theorem 2 to give criteria for a closed 

4-manifold M to be s imple  homotopy equivalent to the total space of an S 1- 

bundle, if the irreducible summands of the base N are all virtually Haken and 

7r l (M) is torsion free. 
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THEOREM 5: A closed 4-manfiold M is a-cobordant to the toted space of an 

Sl-bundle over an asphericed closed &manifold which is Sefiert f/bred or admits a 

Sol 3-structure if and only f ix(M) = 0 and # = ~rl ( M) has normed subgroups A < 
B < C such that A is i~anlte cyclic, #/A has one end and t~nite cohomologiced 

dimension, B /A is nontrivied abelian, C has finite index in # and C/A has inanite 
abellanization. If B /A  has rank at least 2 then M is homeomorphic to such a 

brindle space. 

Proof." The conditions are clearly necessary. If they hold then #/A is a PD3- 
group by Theorem 4 and has a subgroup of finite index with a nontrivial abelian 

normal subgroup and infinite abelianization. Therefore #/A is the group of a 

closed Seifert fibred 3-manifold (if there is such a subgroup B with B/A of rank 

1 or 3) or of a closed 3-manifold with a Sol-structure (if the rank of B/A  is 2, for 

every such subgroup B) [10]. Hence M is homotopy equivalent to the total space 

E of such a bundle. Any such homotopy equivalence must be simple, by Lemma 

2. Since the surgery obstruction maps 04 from [M; G/TOP] to L~(#; wM) and 0s 

from [SM; G/TOP] to L~(#; wM) are isomorphisms [14], M is in fact s-cobordant 

to E. Finally if there is such a subgroup B such that B/A has rank at least 2 
(corresponding to the base having an E z-, Nil z- or So/Z-structure) then # is 

virtually poly-Z (and is torsion free), so 5-dimensional s-cobordisms with group 

# are products [7]. t~ 

If a dosed 4-manifold M with fundamental group # is s-cobordant to the total 

space of an Sl-bundle over a homotopy-hyperbolic 3-manifold then x(M) = 0 

and # has an infinite cyclic normal subgroup A such that #/A has one end and 

Kuite cohomologieal dimension and has no noncyclic abelian subgroup. We could 

use Theorem 10.7 of [6] instead of [14] to prove the converse if every PDz-group is 

a 3-manifold group and if the geometrization conjecture for atoroidal 3-manifolds 
is true. Similarly we may show that simple homotopy equivalence implies s- 

cobordism when the base is Haken with square root closed accessible fundamental 

group, using [3] instead of [14]. However we do not yet have good intrinsic 
characterizations of the fundamental groups of such 3-manifolds comparable to 

the result of [10]. (The papers [3], [6] and [14] do not explicitly consider the 

4-dimemional cases. However their results remain valid in dimension 4 up to 

s-cobordism.) 
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